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Abstract
We show the conditions under which nonlinear time-delayed dynamical systems
with multiplicative noise sources can be transformed into linear time-delayed
systems with additive noise sources. We show that, for such reducible
systems, analytical expressions for stationary distributions can be obtained. We
demonstrate that fluctuation–dissipation relations of reducible systems become
trivial and we show that reducible systems may exhibit delay- and noise-
induced transitions to bistability and secondary transitions to non-stationarity.
Our general findings are exemplified for three models: a Gompertz model, a
Hongler model and a model involving a 1 − x2 noise amplitude.

PACS numbers: 05.40.−a, 02.30.Ks, 02.50.Ey

1. Introduction

In a variety of applications, stochastic delay differential equations (SDDEs) portray real-
life and artificial systems involving memory effects (time delays) coupled to spontaneous
fluctuations (noise). Time delays play important roles in laser physics [1–7], chaos control
[8] and engineering sciences [9–12]. Time delays are typically involved in biological systems
[13], in particular, in motor control systems [14–19], neural network systems [20–25] and
ecological systems [26]. Noise can be observed as thermal noise [27] and multiplicative noise
[28]. For example, we are dealing with multiplicative noise when the fertility parameter of the
logistic model for population growth fluctuates around a mean value [29]. Moreover, there is
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evidence that balancing movements [17] and the pupil dynamics [15, 30, 31] crucially depend
on the impact of multiplicative noise.

Time delays and noise can affect the dynamics of systems in different ways. In the
absence of noise, stable systems can become unstable when time delays exceed certain critical
values. In the absence of time delays, multiplicative noise can induce transition phenomena
known as noise-induced transitions [28]. In systems exhibiting time delays and multiplicative
noise both phenomena can occur, and the critical control parameters, namely, the critical
delays and the critical noise amplitudes, will depend on each other. Therefore, our central
aim is to combine analytical tools derived for time delayed systems [9, 32, 33] and stochastic
systems with multiplicative noise [28] and to study the solutions of delay differential equations
that involve multiplicative noise. However, in the context of SDDEs, we are still far away
from an analytical approach. For instance, the derivation of exact stationary distribution is
still an unsolved problem. For systems without time delays variable transformations that
map nonlinear systems with multiplicative noise sources to linear systems with additive noise
sources have become important solution methods. In particular, a general condition for which
nonlinear systems with multiplicative noise are reducible and can be transformed into linear
additive noise systems has been shown in [28, 29, 34]. Therefore, the aim is to generalize this
variable transformation method to time-delayed multiplicative noise systems. In particular, it
would be helpful to derive the condition under which a nonlinear SDDE can be transformed
into a linear additive noise SDDE and can be solved analytically.

The paper is organized as follows. In section 2 we derive the condition for which
a nonlinear SDDE can be transformed into a linear one. We show explicitly that if this
condition holds, then the corresponding delay Fokker–Planck equation (DFPE) becomes a
linear additive noise DFPE as well. The stationary distributions of systems satisfying this
condition are obtained. Moreover, in section 3 a dissipation–fluctuation relation is discussed
for reducible systems. For the applications we give three example models (see section 4): a
Gompertz model, a Hongler model and a 1 − x2 noise model. Finally, we give conclusions
and some discussions in section 5.

2. Variable transformations of nonlinear systems to linear ones

2.1. Transformation of nonlinear stochastic delay differential equations to linear ones

In this section, we show that the Stratonovich SDDE
d

dt
X(t) = h(X(t),X(t − τ)) + g(X(t))�(t), (1)

where �(t) is assumed to be a Gaussian random force with zero mean and obeys 〈�(t)�(t ′)〉 =
δ(t − t ′), can be transformed into the linear SDDE

d

dt
Y (t) = −aY (t) − bY (t − τ) +

√
Q�(t), (2)

under the condition

g(X) d[h(X,Xτ )] = −ag(X) dX − b
g2(X)

g(Xτ )
dXτ + h(X,Xτ ) d[g(X)], (3)

where X denotes X(t) and Xτ = X(t − τ). In order to verify this condition, we assume that
there is a function f such that Y = f (X) is an invertible variable transformation. That is,
X = f −1(Y ) is well defined. It follows that

d

dt
Y (t) = df (X)

dX
h(X,Xτ ) +

df (X)

dX
g(X)�(t). (4)
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Since the new variable Y satisfies the linear SDDE (2), one obtains

−af (X) − bf (Xτ )︸ ︷︷ ︸
A

+
√

Q�(t)︸ ︷︷ ︸
B

= df (X)

dX
h(X,Xτ )︸ ︷︷ ︸
A

+
df (X)

dX
g(X)�(t)︸ ︷︷ ︸
B

.

Comparing the A and B terms, we find

f (X) =
∫ X

√
Q

g(X′)
dX′ + C, (5)

where C is constant, and

h(X,Xτ ) = g(X)√
Q

{−af (X) − bf (Xτ )}. (6)

The total differential of the drift term can be expressed as

d[h(X,Xτ )] = −a dX − b
g(X)

g(Xτ )
dXτ − 1√

Q

dg(X)

dX
{af (X) + bf (Xτ )} dX. (7)

Multiplying equation (7) with g(X) and collecting terms dX and dXτ , we get

g(X)
∂

∂X
h(X,Xτ ) = −ag(X) + h(X,Xτ )

dg(X)

dX
(8)

and

g(X)
∂

∂Xτ

h(X,Xτ ) = −b
g2(X)

g(Xτ )
. (9)

Adding equations (8) and (9) together, we recover equation (3). For nonlinear systems without
delay we put τ = 0 in equation (8), then equation (8) is the condition derived in previous
works [29, 34].

2.2. Transformation of nonlinear delay Fokker–Planck equations to linear ones

Next, we consider the DFPE
∂

∂t
P (x, t) = − ∂

∂x

∫
h(x, xτ )P (x, t; xτ , t − τ) dxτ +

1

2

∂

∂x
g(x)

∂

∂x
g(x)P (x, t), (10)

associated with the Stratonovich SDDE (1). As shown in section 2.1, under condition (3) the
DFPE (10) can be transformed into the linear DFPE

∂

∂t
P (y, t) = ∂

∂y

∫
(ay + byτ )P (y, t; yτ , t − τ) dyτ +

Q

2

∂2

∂y2
P(y, t), (11)

using the transformation y = f (x). Indeed, we will next derive equation (11) directly from
equation (10). To this end, we begin with providing the relation between the probability
densities P(x, t) and P(y, t). Suppose that P(x, t) is a probability density of the random
variable X defined by P(x, t) = 〈δ(x − X)〉 and P(y, t) is a probability density of the random
variable Y defined by P(y, t) = 〈δ(y − Y )〉. Using the variable transformation Y = f (X),
we can write [35]

P(x, t) = P(y, t)

∣∣∣∣dy

dx

∣∣∣∣ . (12)

Extending this relation to multiple variables, it follows that the joint probability densities
P(x, t; xτ , t − τ) and P(y, t; yτ , t − τ) satisfy

P(x, t; xτ , t − τ) dxτ = P(y, t; yτ , t − τ)

∣∣∣∣dy

dx

∣∣∣∣ dyτ . (13)
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Figure 1. Parametric stability diagram for the linear SDDE (2). The stable region is defined by the
intersection between two solid lines: one is the stationary bifurcation line a = −b (lower line), the
second is obtained from the parametric equations equation (17) (upper line). Subset I determines
the stable region given by a > |b| where the critical delay τc does not exist and subset II determines
the stable region satisfy both b > |a| and τ < τc .

It follows from equation (12) that the derivative with respect to t can be written for the
distribution of the variable y like ∂P (x, t)/∂t = f ′(x)∂P (y, t)/∂t . By inserting equation (6)
and equation (13) into the DFPE (10), we obtain(

dy

dx

)
∂

∂t
P (y, t) = −

(
dy

dx

)
∂

∂y

∫
g(x)√

Q
{−af (x) − bf (xτ )}P(y, t; yτ , t − τ)

∣∣∣∣dy

dx

∣∣∣∣ dyτ

+
1

2

(
dy

dx

)
∂

∂y
g(x)

(
dy

dx

)
∂

∂y
g(x)P (y, t)

∣∣∣∣dy

dx

∣∣∣∣ . (14)

Using g(x)f ′(x) = √
Q, we obtain the linear DFPE (11) corresponding to the linear

SDDE (2).

2.3. Linear SDDE revisited

Since all nonlinear problems satisfying condition (3) can be mapped to the linear equation (2),
it is worthwhile to review some basic properties of equation (2).

2.3.1. Case Q = 0. Let λ be an eigenvalue of the deterministic delay differential equation
Ẏ = −aY − bYτ related to equation (2). The fixed point is Yst = 0. In order to determine the
stability of this fixed point we note that the characteristic equation of the deterministic delay
differential equation is given by

λ + a + b e−λτ = 0. (15)

First of all, we have a stationary bifurcation at the line a = −b with (a, b) =
(−1/τ, 1/τ) · · · (∞,∞) (see figure 1). Second, if b � |a| holds, then an oscillatory (Hopf)
bifurcation can occur at a critical delay τc given by

τc = 1√
b2 − a2

arccos
(
−a

b

)
. (16)

For any τ < τc, the boundary of the stable region in the parameter space (a, b) can be
determined by the parametric equations [32, 33]

b(ω) = ω

sin(ωτ)
, a(ω) = −ω cot(ωτ), (17)
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where ω = √
b2 − a2. Note that the parametric bifurcation line includes the point

(a, b) = (−1/τ, 1/τ) for ω → 0 (i.e. for b → −a > 0) such that the oscillatory (parametric)
bifurcation line and the stationary (straight) bifurcation line merge at (a, b) = (−1/τ, 1/τ).
Note also that on the line b = a > 0 we have τc → ∞, which implies that for this condition
the fixed point Yst = 0 is stable for every τ � 0. Furthermore, if a > |b| holds, then the fixed
point Yst = 0 is stable again for every τ � 0. Therefore, the domain of stability is composed
of the region b � |a| with τ < τc and a �= −b and of the region a > |b| (see also figure 1
again).

2.3.2. Case Q > 0. Due to the fact that the system is linear and the noise �(t) is a Langevin
force, one can show that the existence of the stationary solution of equation (2) depends on
the domain of stability of the fixed point Yst of its deterministic counterpart. Namely, the
stationary distribution of equation (2) exists if b > |a| with τ < τc and a > |b|. In this case,
the stationary distribution is the Gaussian distribution [36–39]

Pst(y) = 1√
2πK(τ)

exp

{
− y2

2K(τ)

}
. (18)

The variance K(τ) can be expressed as

K(τ) =




Q

2

(
1 + bω−1 sin(ωτ)

a + b cos(ωτ)

)
, b > |a|, τ < τc

Q

2

(
1 + bω−1 sinh(ωτ)

a + b cosh(ωτ)

)
, a > |b|

Q

4a
(1 + aτ), a = b.

(19)

For b > |a| at the oscillatory (Hopf) bifurcation, the variance of the stationary distribution
becomes infinity. In particular, at the critical delay, we find

b cos(ωτc) + a = 0,

which yields,

K(τc) = Q

2

[
1 + bω−1 sin(ωτc)

a + b cos(ωτc)

]
→ ∞.

In addition, at the stationary bifurcation line, we also find that the variance becomes infinity at
b = −a. To demonstrate this, we can consider the limiting cases a → −b and b → −a. Both
cases lead to K(τ) → ∞ irrespective of τ . Finally, note that K(τ) is a monotonic function
with respect to τ . For b > |a|, we have (see also [39])

d

dτ
K(τ) = b2Q

2

(
1 + cos(ωτ + ϕ1)

[a + b cos(ωτ)]2

)
> 0, (20)

where ϕ1 denotes a phase that depends on the parameters a and b. As indicated in equation (20),
the variance increases monotonically as a function of τ (both for a > 0 and for a < 0). For
a > |b|, we have

d

dτ
K(τ) = bQ

2

(
a cosh(ωτ) − ω sinh(ωτ) + b

[a + b cosh(ωτ)]2

)
. (21)

From ω < a it follows that a cosh(ωτ) − ω sinh(ωτ) > 0 holds for τ � 0, which in turn
gives us the relation a cosh(ωτ) − ω sinh(ωτ) = |b| cosh(ωτ + ϕ2), where ϕ2 = ϕ2(a, b) < 0
denotes a phase variable again. equation (21) can then be transformed into

d

dτ
K(τ) = bQ

2

( |b| cosh(ωτ + ϕ2) + b

[a + b cosh(ωτ)]2

)
. (22)
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For b > 0, we see from equation (22) that the variance increases monotonically as a function
of τ . In contrast, for b < 0 the expression |b| cosh(ωτ + ϕ2) + b is semi-positive for all τ

(in fact it is strictly positive for all τ except for τ ∗ = −ϕ2/ω). Consequently, for b < 0, the
variance (22) decreases monotonically with τ .

2.4. Stationary distributions of reducible systems

Again, we consider the nonlinear SDDE

d

dt
X(t) = h(X(t),X(t − τ); 	α) + g(X(t); 	β)�(t), (23)

with additional parameters 	α = (α1, α2, . . .) and 	β = (β1, β2, . . .). Using Y = f (X), the
system (23) can be transformed into the linear SDDE (2) and the parameter space (	α, 	β) can be
mapped to the parameter space (a, b) by a = a(	α, 	β) and b = b(	α, 	β). By inverse mapping,
we can determine the parameter conditions for the existence of stationary distributions of
equation (23) in terms of the parameters 	α and 	β. From equation (12) and equation (18) it
follows that the stationary distribution of the nonlinear SDDE (23) is given by

Pst(x) = 1√
2πK(τ)

exp

{
− [f (x)]2

2K(τ)

}
|f ′(x)|, (24)

with K(τ) = K(τ ; a(	α, 	β), b(	α, 	β)).

3. Generalized fluctuation–dissipation theorem

3.1. Systems without time delay

We first consider systems without delay for which the drift term is in the form h(X(t)) and
introduce the total fluctuating force ξ(X, t) = g(X)�(t). Thus, the stochastic differential
equation can be written as

d

dt
X(t) = h(X(t)) + ξ(X(t), t). (25)

Assume that the probability current vanishes in the stationary case. Then, the following
balance equation holds:

〈h〉 = −〈ξ 〉. (26)

In the meteorological literature, this balance equation is called generalized dissipation–
fluctuation theorem [40]. We would like to point out that this balance relation should not
be confused with dissipation–fluctuation theorems of the Green–Kubo theory [41].

3.2. Systems with time delay and time-delayed reducible systems

It is clear that relation (26) holds also for systems with time delays, that is, for systems
satisfying equation (1). In addition, for reducible systems with time delays we have the
following two properties:

(a) For the variable transformation X → Y the multiplicative noise source is transformed
into additive noise and the nonlinear drift force becomes linear. In particular, the drift and
diffusion terms are transformed into hY = −(aY + bYτ ) and ξY = √

Q�(t) and their averages
satisfy

〈hY 〉 = 0, 〈ξY 〉 = 0. (27)
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For reducible time-delayed systems a ‘stronger’ version of the fluctuation–dissipation relation
(26) holds which is given by (27).

(b) In some cases analytical expressions for the averages 〈h〉 and 〈ξ 〉, respectively, can be
derived by means of the transformation to the linear system. Comparing the Fokker–Planck
description in the previous section with the Langevin description (see equation (1)), we see
that

〈ξ 〉st = −1

2

∫
�

g
∂

∂x
[g(x)Pst(x)] dx,

(where we assume again that the probability current vanishes such that the surface terms
arising due to partial integration can be neglected). This implies

〈h〉st = −〈ξ 〉st = 1

2

∫ ∞

−∞
g(f −1(y))

d

dy
Pst(y) dy,

= −1

2

∫ ∞

−∞
Pst(y)

d

dy
g(f −1(y)) dy. (28)

Here, we assume that the surface term g(f −1(y))Pst(y) vanishes for y → ±∞. For an
example see section 4.2.

4. Examples

4.1. Numerics

In the following examples, we will present both analytical and numerical results. We obtained
the numerical results from the relevant SDDEs. To this end, the Stratonovich SDDEs were
first transformed into the corresponding Itô SDDEs. That is, the SDDEs of the form (1) were
transformed into

d

dt
X(t) = h(X(t),X(t − τ)) +

1

2
g(X(t))

dg(X(t))

dX
+ g(X(t))�(t). (29)

The Itô SDDEs were then solved numerically by means of an stochastic Euler forward
algorithm [35] that is known to hold also for time-delayed equations [42]. Accordingly,
equation (29) was solved on a time interval that was divided into finite steps of t . The
random variable Xn = X(tn) for the discrete time points tn = nt with n = 0, 1, 2, . . . , were
computed from

Xn+1 = Xn + t

{
h(Xn,Xn−m) +

1

2
g(Xn)

dg(Xn)

dXn

}
+

√
tg(Xn)wn, (30)

where Xn−m = X(tn−m) denotes the retarded random variable with a discrete time delay
of τ = mt . In equation (30) wn is the Gaussian random generator with 〈wn〉 = 0
and 〈wnwn′ 〉 = δnn′ (obtained from a Box-Muller algorithm). The initial condition in all
simulations was Xn = x0 for n ∈ [−m, 0]. For every realization we iterated equation (30) T
times with T sufficiently large such that the final random value XT represented the stationary
case. Using this procedure, for a given SDDE, we computed N realizations of XT and derived
from this set of realizations the stationary probability density of the SDDE.

4.2. Gompertz model

We first consider the SDDE given by

d

dt
X = −ãX ln(X/c) − b̃X ln(X(t − τ)/c) +

√
Q̃X�(t), (31)
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Figure 2. Stationary probability density of the Gompertz model (31) with parameters Q = 1,
c = 1 and τ = 1. Solid line: (a, b) = (2, 1). Dashed line: (a, b) = (1, 2). Circles represent the
simulation results computed from N = 105 realizations and total integration time T = 104 with
single time step t = 10−2 and x0 = 0.1 (see section 4.1).

with c > 0 and ã, b̃ ∈ R, X ∈ [0,∞); 	α = (ã, b̃, c), β = Q̃. Using the variable
transformation Y = ln(X/c), we obtain equation (2) with a = ã, b = b̃ and Q = Q̃. Hence,
we can find that if the relation b̃ � |ã| with ã �= −b̃ and τ < τc = (b̃2 − ã2)−1/2 arccos(−ã/b̃)

holds or if the relation ã > |b̃| holds, then the stationary distribution of the Gompertz model
(31) exists. As a result of the mapping Y = ln(X/c) and equation (24), the stationary
distribution can be expressed as

Pst(x) = 1

x

1√
2πK(τ)

exp

{
−

[
ln

x

c

]2 1

2K(τ)

}
, (32)

with K(τ) defined by equation (19). Equation (32) includes distributions obtained in previous
studies as special cases. For instance, in the case ã = 0, the stationary distribution of
equation (31) is given by equation (32) with

K(τ) = Q

2

(
1 + sin(bτ)

b cos(bτ)

)
, (33)

which is equivalent to the distributions derived in [43]. In the case b̃ = 0, from equation (32)
we have

Pst(x) = 1

x

√
ã

πQ̃
exp

{
−

[
ln

x

c

]2 ã

Q̃

}
, (34)

which recovers the result in [44]. Figure 2 shows the stationary probability densities of the
Gompertz model (31) given by equation (32) for different parameters between a and b.

Next, we will consider the balance of drift and diffusion terms for the Gompertz model
(31). In section 3, we showed that the average drift term can be calculated analytically by
utilization of variable transformation. From equation (28) we find that

〈h〉 = −c
√

Q̃

2

∫ ∞

−∞
ey

(
dPst(y)

dy

)
dy,

which reads explicitly

〈h〉 = c
√

Q̃

2
e(K(τ)/2). (35)

In figure 3 we show that for ã > |b̃| the average drift term 〈h〉 given by equation (35)
approaches a constant as the delay tends to infinity.
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Figure 3. Average drift term 〈h〉 of the Gompertz model (31) as a function of time delay as
computed from equation (35). The parameters are Q = 1, c = 1, τ = 1, b = 1 and a = 2.

4.3. Noise-induced transition to bistability

In this section we study the impact of time delays on noise-induced transitions. To this end, we
will consider two models: (i) a time-delayed Hongler model and (ii) a model involving a noise
amplitude of the form 1 − x2. Note that the Hongler model [28, 45, 46] as well as models
with 1 − x2 amplitudes [47] play an important role in our understanding of noise-induced
transitions because they can be solved analytically.

4.3.1. Hongler model. We first consider the Hongler model defined by

d

dt
X(t) = −ã tanh(cX) − b̃

sinh(cXτ )

cosh(cX)
+

√
Q̃

cosh(cX)
�(t), (36)

where c > 0 and ã, b̃ ∈ R, X ∈ R. Equation (5) gives us the transformation Y = sinh(cX)/c

which transforms equation (36) into equation (2) with a = ã, b = b̃,Q = Q̃. Consequently,
with respect to the parameter space (ã, b̃) the stationary distribution of the Hongler model
(36) exists if the condition b̃ � |ã| with ã �= −b̃ and τ < τc = (b̃2 − ã2)−1/2 arccos(−ã/b̃)

holds or if the condition ã > |b̃| is satisfied. With the help of equation (24), the stationary
distribution of the Hongler model (34) is given by

Pst(x) = 1√
2πK(τ)

exp

{
− sinh2(cx)

2c2K(τ)

}
cosh(cx), (37)

with K(τ) given by equation (19). For ã = 0, the function K(τ) reduces to equation (33),
and we obtain the stationary distribution (37) with equation (33) which has previously been
derived in [48].

Next, we will consider the delay- and noise-induced transition to bistability. By using the
generalized stationary distribution equation (37), it was shown in a previous study [48] that
the transition occurs at

K(τ) = 1

c2
. (38)

In contrast to the aforementioned previous study for which ã = 0 holds, we now need to
distinguish between three cases: b̃ > |ã|, ã = b̃, ã > |b̃|. Let us discuss delay- and noise-
induced transitions for these three cases in terms of the τ − Q plane; see figure 5. In the case
b̃ > |ã| (see figure 5(a)), increasing the delay or noise strength can result in the stationary
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Figure 4. Noise- and delay-induced transitions to bistability demonstrated by the stationary
probability density of the Hongler model (36). (a) Unimodal distribution with parameters Q = 1,
c = 1 and τ = 0.8. Solid line: (a, b) = (2, 1). Dashed line: (a, b) = (1, 2). (b) Bimodal distribution
with parameters Q = 8, c = 1 and τ = 0.8. Solid line: (a, b) = (2, 1). Dashed line: (a, b) = (1, 2).
Circles represent the simulation results (N = 105, T = 104, t = 10−2, x0 = 0.1).

distribution (unimodal distribution) becoming a bimodal distribution (see also figure 4). In
addition, there is a critical delay τc for which the stationary distribution does not exist. That
is, the Hongler model exhibits a non-stationary state as the delay is increased over the critical
delay. In the cases b̃ = ã and ã > |b̃| the stationary distribution exists for all time delays
τ � 0. In the case b̃ = ã, the transition curve of the unimodal–bimodal transition tends to zero
for large delays (see figure 5(b)). Consequently, as the delay becomes very large, the unimodal
distribution exists only for very small noise amplitudes Q. In other words, for very large time
delays the Hongler model is very sensitive to small noise intensities and the transition from
the unimodal to the bimodal distribution occurs at very small critical noise amplitudes. In the
case ã > |b̃|, the transition curve tends to a constant as the time delay becomes large (see
figure 5(c)). For τ → ∞, we obtain noise-induced transitions to bistability at a delay-
independent critical noise amplitude Q = 2ω/c.

4.3.2. Model with a noise amplitude of the form 1 − x2. Next, we consider a model that
exhibits a noise amplitude proportional to 1 − x2. More precisely, we now assume that we
have

d

dt
X(t) = h(X,X(t − τ)) +

√
Q̃(1 − X2)�(t), (39)

with X ∈ [−1, 1]. We require that for Q̃ = 0 the drift force results in a unique stable fixed
point at x = 0. A reducible model of the form (39) satisfying this requirement is given by

d

dt
X(t) = −ã(1 − X2) arctanh(X) − b̃(1 − X2) arctanh(X(t − τ)) +

√
Q̃(1 − X2)�(t),

(40)

with ã, b̃ ∈ R. The appropriate variable transformation is given by Y = arctanh(X) and maps
equation (40) to equation (2) with a = ã, b = b̃ and Q = Q̃. From equation (24) it follows
that the stationary distribution reads

Pst(x) = 1√
2πK(τ)

exp

{
−arctanh2(x)

2K(τ)

}
1

1 − x2
(41)

and exists for b̃ � |ã| with ã �= −b̃ and τ < τc and for ã > |b̃|.
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Figure 5. Generalized phase diagrams on the τ − Q plane for the Hongler model. Solid lines are
plotted from K(τ) = 1/c2 and equation (19). (a1): b > |a| with a = 1 and b = 2. (a2): b > |a|
with a = −1 and b = 2. (b): a = b = 1. (c1): a > |b| with a = 2 and b = 1. (c2): a > |b| with
a = 2 and b = −1.
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Figure 6. Noise- and delay-induced transitions to bistability demonstrated by the stationary
probability density of the 1 − x2 noise model. (a) Unimodal distribution with parameters Q = 0.5
and τ = 0.5. Solid line: (a, b) = (2, 1). Dashed line: (a, b) = (1, 2). (b) Bimodal distribution
with parameters Q = 4 and τ = 0.2. Solid line: (a, b) = (2, 1). Dashed line: (a, b) = (1, 2).
Circles represent the simulation results (N = 105, T = 104, t = 10−2, x0 = 0.1).
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Figure 7. Phase diagrams on the τ − Q plane for 1 − x2 noise model. Solid lines are plotted from
K(τ) = 1/2 and equation (19). (a1) b > |a| with a = 1 and b = 2. (a2) b > |a| with a = −1 and
b = 2. (b) a = b = 1. (c1) a > |b| with a = 2 and b = 1. (c2) a > |b| with a = 2 and b = −1.

Let us now discuss the transition to bistability. Let xe be the extremum of Pst(x). Then
xe is a solution of

2xe − arctanh(xe)

K(τ)
= 0. (42)

Here xe �= {−1, 1} and we suppose that K(τ) < ∞. Obviously, the stationary distribution can
have up to three extrema: equation (42) always has a trivial solution x = 0 and there might be
a pair of nonzero solutions −xe and xe. It can easily be seen that, for xe �= 0, equation (42)
can be written as 2K(τ) = (1/xe)arctanh(xe). It immediately follows that K(τ) > 1/2.
Therefore, Pst(x) has the extrema at xe and −xe when K(τ) > 1/2 (see figure 6(b)). In
contrast, the zero is the only maximum of Pst(x) when K(τ) < 1/2 (see figure 6(a)). From
this fact we can summarize the qualitative different dynamical regimes in terms of the τ − Q

parameter space as shown in figure 7. Note that again it is useful to distinguish between the
cases b̃ > |ã|, ã = b̃, ã > |b̃|.
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5. Conclusions

In this study, we derived a condition under which nonlinear time-delayed systems with
multiplicative noise sources can be classified as reducible systems. More precisely, we showed
that when drift and diffusion functions satisfy a certain relationship then nonlinear SDDEs and
DFPEs composed of these drift and diffusion functions can be transformed into linear SDDEs
and DFPEs by means of particular variable transformations. In addition, we found that for such
nonlinear but reducible SDDEs and DFPEs, analytical expressions for stationary distributions
can be obtained. Moreover, we showed that the aforementioned variable transformations
allow us to determine the parameter regions in which stationary distributions of reducible
time-delayed stochastic systems exist.

In the context of dissipation–fluctuation relations, we studied the balance relation
〈h〉 = −〈ξ 〉 that relates the drift h to an appropriately defined total fluctuating force ξ . We
demonstrated that this balance relation becomes 〈h〉 = 〈ξ 〉 = 0 for reducible systems provided
that these reducible systems are studied in terms of transformed variables. In particular, we
obtained an analytical expression for the average drift term 〈h〉 of a time-delayed stochastic
Gompertz model. We showed how 〈h〉 depends on the time delay of the model and we found
that 〈h〉 becomes constant for large time delays.

We demonstrated the power of our approach to nonlinear time-delayed systems with
multiplicative noise sources by studying three reducible models in detail: a time-delayed
Gompertz model with multiplicative noise, a time-delayed Hongler model, and a model
involving a 1 − x2 noise amplitude and a time-delayed drift term. In particular, we derived
the exact stationary distributions of these models.

As far as the Gompertz model is concerned, we derived the explicit form of the stationary
distribution Pst(x) involving the parameters ã, b̃, c, Q̃, τ . Since the Gompertz model is often
found to fit data better than the logistic and lognormal models [49], the exact stationary
distribution Pst(x) may be applied for statistical analysis. To this end, one can estimate the
parameters ã, b̃, c, Q̃, τ from experimental data by requiring that the experimentally observed
distribution function Pexp(x) fit Pst(x) best in the sense that the Kullback–Leibler information
[50] becomes minimal. In other words, we may choose ã, b̃, c, Q̃, τ such that for these
parameters K = ∫

Pst(x) ln(Pexp(x)/Pst(x)) dx assumes a minimum.
In the case of the Hongler model and the model with 1 − x2 noise amplitude, we found

that the respective τ − Q parameter spaces can be split into three domains in which the
systems exhibit qualitatively different stochastic behaviours. Transitions between unimodal
and bimodal distributions as well as transitions between stationary and non-stationary states
can occur when time delays or noise amplitudes are varied. In particular, the transitions
to bistability depend both on the noise amplitudes and on the time delays. For finite noise
amplitudes the transition to the non-stationary case can only occur from the bimodal dynamical
regime. That is, for finite noise amplitudes, the unimodal distribution cannot become unstable.
There must be a transition to bistability before the transition to the non-stationary regime can
occur. In this sense, the transition to non-stationarity can be regarded as a secondary transition.
The reason for this behaviour is that the variance K(τ) of the corresponding linear stochastic
time-delayed system increases monotonically with the time delay (see equation (20)). The
variance K(τ) can be regarded as an effective noise amplitude for the Hongler model and the
model with 1 − x2 noise amplitude. Accordingly, if the transition to bistability occurs when
the effective noise amplitude approaches a critical value Kc, the transition to instability occurs
when the effective noise amplitude tends to infinity. Since K increases monotonically with τ

for any critical value Kc the variance K will first approach the critical value and subsequently
tend to infinity. Only in the limit of vanishing noise (i.e. for Q = 0), there are triple points
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(τ,Q) = (τc, 0) in the respective τ − Q parameter spaces of the Hongler model and the
model with a 1 − x2 noise amplitude at which stable unimodal distributions, stable bimodal
distributions and non-stationary states can coexist (see figures 5(a) and 7(a)).

Finally, we would like to point out that the exactly solvable nonlinear models discussed
in our studies may be used as a testbed for numerical solvers of SDDEs [51] and perturbation
theoretical approaches developed for SDDEs and DFPEs [52, 53].
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[42] Küchler U and Platen E 2000 Math. Comput. Simul. 54 189
[43] Frank T D and Beek P J 2001 Phys. Rev. E 64 021917
[44] Goel N S, Maitra S C and Montroll E W 1971 Rev. Mod. Phys. 43 231
[45] Hongler M 1979 Helv. Phys. Acta 52 280
[46] Doering C R 1986 Phys. Rev. A 34 2564
[47] Doering C R 1987 Phys. Lett. A 122 133
[48] Frank T D, Patanarapeelert K and Tang I M 2005 Phys. Lett. A 339 246
[49] Gutierrez R, Sanchez R G, Nafidi A, Roman P and Torres F 2005 Cybern. Syst. 36 203
[50] Kullback S 1968 Information Theory and Statistics (New York: Dover)
[51] Baker C T H 2000 J. Comput. Appl. Math. 125 309
[52] Guillouzic S, L’Heureux I and Longtin A 1999 Phys. Rev. E 59 3970
[53] Frank T D 2005 Phys. Rev. E 71 031106

http://dx.doi.org/10.1016/0167-2789(96)00124-8
http://dx.doi.org/10.1016/S0378-4754(00)00224-X
http://dx.doi.org/10.1103/PhysRevE.64.021917
http://dx.doi.org/10.1103/RevModPhys.43.231
http://dx.doi.org/10.1103/PhysRevA.34.2564
http://dx.doi.org/10.1016/0375-9601(87)90791-2
http://dx.doi.org/10.1016/j.physleta.2005.03.050
http://dx.doi.org/10.1080/01969720590897233
http://dx.doi.org/10.1016/S0377-0427(00)00476-3
http://dx.doi.org/10.1103/PhysRevE.59.3970
http://dx.doi.org/10.1103/PhysRevE.71.031106

	1. Introduction
	2. Variable transformations of nonlinear systems to linear ones
	2.1. Transformation of nonlinear stochastic delay differential equations to linear ones
	2.2. Transformation of nonlinear delay Fokker--Planck equations to linear ones
	2.3. Linear SDDE revisited
	2.4. Stationary distributions of reducible systems

	3. Generalized fluctuation--dissipation theorem
	3.1. Systems without time delay
	3.2. Systems with time delay and time-delayed reducible systems

	4. Examples
	4.1. Numerics
	4.2. Gompertz model
	4.3. Noise-induced transition to bistability

	5. Conclusions
	Acknowledgments
	References

